

Octopaminergic modulation of distance and force production during Jumping in wild type and mutant *Drosophila melanogaster*

THE UNIVERSITY of York

C.J.H. Elliott, N. Zumstein, O. Forman, U. Nongthomba & J.C. Sparrow

Introduction: The aim is to measure the distance jumped and muscle force produced by *Drosophila*, and to compare the wild-type with two octopaminergic mutants:

- M18 synthesizes no octopamine
- hono has no tyr/oct receptors

Mutants ...

Jump 2/3 of wild-type distance \Rightarrow 2/3 of wild-type force Actually produce 53% of wild-type force

Reduction in *hono* suggests this receptor has a role at neuromuscular junction If *hono* is a pure tyramine receptor, we would not expect a reduction in the *hono* flies

Acknowledgements. We would like to thank Maria Monastirioti and Mayako Kutsukaka for sending us files. We are grateful to The Nuffield Foundation and The Physiological Society for their support

Physiology

Facts ..

mass 1.1 mg Length of femur+tibia+tarsus 1.36 mm

Take off after 4.9 ms Speed 0.6-0.7 m/s

Peak force measured as 101 μN at 8.2 ms 88% of peak force at 5 ms

... and our Figures

Calculated KE at take off 200 nJ Calculated Take off with velocity 0.6 m/s Power 40 μ W = 1.5 W/kg

Calculated force 137 µN at take off Calculated take-off time 5 ms

Conclusions

Jumping

- does not require great energy storage
- enhanced by octopamine
- hono likely to be a dual tyr/oct receptor